Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Med (Berl) ; 102(1): 11-21, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993561

RESUMO

Vascular endothelial dysfunction is a major risk factor in the development of renal diseases. Recent studies pointed out a major interest for the inter-endothelial junction protein CD146, as its expression is modulated during renal injury. Indeed, some complex mechanisms involving this adhesion molecule and its multiple ligands are observed in a large number of renal diseases in fundamental or clinical research. The purpose of this review is to summarize the most recent literature on the role of CD146 in renal pathophysiology, from experimental nephropathy to clinical trials.


Assuntos
Moléculas de Adesão Celular , Nefropatias , Humanos , Antígeno CD146/metabolismo , Rim/metabolismo , Nefropatias/etiologia , Fatores de Risco
2.
Biomedicines ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137406

RESUMO

The melanoma cell adhesion molecule, shed from endothelial and cancer cells, is a soluble growth factor that induces tumor angiogenesis and growth. However, the molecular mechanism accounting for its generation in a tumor context is still unclear. To investigate this mechanism, we performed in vitro experiments with endothelial/cancer cells, gene expression analyses on datasets from human colorectal tumor samples, and applied pharmacological methods in vitro/in vivo with mouse and human colorectal cancer cells. We found that soluble MCAM generation is governed by ADAM17 proteolytic activity and NOX1-regulating ADAM17 expression. The treatment of colorectal tumor-bearing mice with pharmacologic NOX1 inhibitors or tumor growth in NOX1-deficient mice reduced the blood concentration of soluble MCAM and abrogated the anti-tumor effects of anti-soluble MCAM antibodies while ADAM17 pharmacologic inhibitors reduced tumor growth and angiogenesis in vivo. Especially, the expression of MCAM, NOX1, and ADAM17 was more prominent in the angiogenic, colorectal cancer-consensus molecular subtype 4 where high MCAM expression correlated with angiogenic and lymphangiogenic markers. Finally, we demonstrated that soluble MCAM also acts as a lymphangiogenic factor in vitro. These results identify a role for NOX1/ADAM17 in soluble MCAM generation, with potential clinical therapeutic relevance to the aggressive, angiogenic CMS4 colorectal cancer subtype.

3.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675283

RESUMO

Cardiac fibrosis constitutes irreversible necrosis of the heart muscle as a consequence of different acute (myocardial infarction) or chronic (diabetes, hypertension, …) diseases but also due to genetic alterations or aging. Currently, there is no curative treatment that is able to prevent or attenuate this phenomenon that leads to progressive cardiac dysfunction and life-threatening outcomes. This review summarizes the different targets identified and the new strategies proposed to fight cardiac fibrosis. Future directions, including the use of exosomes or nanoparticles, will also be discussed.


Assuntos
Cardiomiopatias , Infarto do Miocárdio , Humanos , Cardiomiopatias/metabolismo , Miocárdio/metabolismo , Infarto do Miocárdio/metabolismo , Fibrose , Transdução de Sinais
4.
Acta Neuropathol Commun ; 10(1): 151, 2022 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-36274147

RESUMO

RATIONALE: Glioblastoma multiforme (GBM) is a primary brain tumor with poor prognosis. The U.S. food and drug administration approved the use of the anti-VEGF antibody bevacizumab in recurrent GBM. However, resistance to this treatment is frequent and fails to enhance the overall survival of patients. In this study, we aimed to identify novel mechanism(s) responsible for bevacizumab-resistance in CD146-positive glioblastoma. METHODS: The study was performed using sera from GBM patients and human GBM cell lines in culture or xenografted in nude mice. RESULTS: We found that an increase in sCD146 concentration in sera of GBM patients after the first cycle of bevacizumab treatment was significantly associated with poor progression free survival and shorter overall survival. Accordingly, in vitro treatment of CD146-positive glioblastoma cells with bevacizumab led to a high sCD146 secretion, inducing cell invasion. These effects were mediated through integrin αvß3 and were blocked by mucizumab, a novel humanized anti-sCD146 antibody. In vivo, the combination of bevacizumab with mucizumab impeded CD146 + glioblastoma growth and reduced tumor cell dissemination to an extent significantly higher than that observed with bevacizumab alone. CONCLUSION: We propose sCD146 to be 1/ an early biomarker to predict and 2/ a potential target to prevent bevacizumab resistance in patients with glioblastoma.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Camundongos , Animais , Humanos , Glioblastoma/patologia , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Antígeno CD146/metabolismo , Camundongos Nus , Integrina alfaVbeta3/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Biomarcadores , Neoplasias Encefálicas/patologia
5.
J Invest Dermatol ; 142(12): 3200-3210.e5, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35690141

RESUMO

CD146 involvement was recently described in skin fibrosis of systemic sclerosis through its regulation of the Wnt pathway. Because the interaction between Wnt and ROS signaling plays a major role in fibrosis, we hypothesized that in systemic sclerosis, CD146 may regulate Wnt/ROS crosstalk. Using a transcriptomic and western blot analysis performed on CD146 wild-type or knockout mouse embryonic fibroblasts, we showed a procanonical Wnt hallmark in the absence of CD146 that is reversed when CD146 expression is restored. We found an elevated ROS content in knockout cells and an increase in DNA oxidative damage in the skin sections of knockout mice compared with those of wild-type mice. We also showed that ROS increased CD146 and its noncanonical Wnt ligand, WNT5A, only in wild-type cells. In humans, fibroblasts from patients with systemic sclerosis presented higher ROS content and expressed CD146, whereas control fibroblasts did not. Moreover, CD146 and its ligand were upregulated by ROS in both human fibroblasts. The increase in bleomycin-induced WNT5A expression was abrogated when CD146 was silenced. We showed an interplay between Wnt and ROS signaling in systemic sclerosis, regulated by CD146, which promotes the noncanonical Wnt pathway and prevents ROS signaling, opening the way for innovative therapeutic strategies.


Assuntos
Escleroderma Sistêmico , Via de Sinalização Wnt , Humanos , Animais , Camundongos , Via de Sinalização Wnt/fisiologia , Antígeno CD146/genética , Antígeno CD146/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Ligantes , Fibroblastos/metabolismo , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo , Fibrose , Estresse Oxidativo
6.
F S Sci ; 3(1): 84-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35559998

RESUMO

OBJECTIVE: To explore the regulatory role of soluble CD146 (sCD146) and its interaction with galectin-1 (Gal1) in placenta-mediated complications of pregnancy. DESIGN: Prospective pilot and experimental studies. SETTING: University-affiliated hospital and academic research laboratory. PATIENT(S): One hundred fifteen women divided into three groups: 30 healthy, nonpregnant women, 50 women with normal pregnancies, and 35 with placenta-mediated pregnancy complications. INTERVENTION(S): Wound-healing experiments were conducted to study trophoblast migration. MAIN OUTCOME MEASURE(S): Quantification of sCD146 and Gal1 by enzyme-linked immunosorbent assay. Analysis of trophoblast migration by wound closure. RESULT(S): Concomitant detection of sCD146 and Gal1 showed lower sCD146 and higher Gal1 concentrations in women with normal pregnancies compared with nonpregnant women. In addition, follow-up of these women revealed a decrease in sCD146 associated with an increase in Gal1 throughout pregnancy. In contrast, in women with preeclampsia, we found significantly higher sCD146 concentrations compared with women with normal pregnancies and no modification of Gal1. We emphasize the opposing effects of sCD146 and Gal, since, unlike Gal1, sCD146 inhibits trophoblast migration. Moreover, the migratory effect of Gal1 was abrogated with the use of an anti-CD146 blocking antibody or the use of small interfering RNA to silence VEGFR2 expression. This suggests that trophoblast migration is mediated though the interaction of Gal1 with CD146, further activating the VEGFR2 signaling pathway. Significantly, sCD146 blocked the migratory effects of Gal1 on trophoblasts and inhibited its secretion, suggesting that sCD146 acts as a ligand trap. CONCLUSION(S): Soluble CD146 could be proposed as a biomarker in preeclampsia and a potential therapeutic target. CLINICAL TRIAL REGISTRATION NUMBER: NCT 01736826.


Assuntos
Pré-Eclâmpsia , Trofoblastos , Antígeno CD146/metabolismo , Feminino , Galectina 1 , Humanos , Gravidez , Estudos Prospectivos , Trofoblastos/metabolismo
7.
J Clin Med ; 11(5)2022 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-35268388

RESUMO

The detection of anti-phosphatidylethanolamine autoantibodies (aPEs) has been proposed to improve the diagnosis and management of patients presenting clinical manifestations of antiphospholipid syndrome (APS), such as thrombosis, and who are persistently negative for conventional markers. After selecting the most specific ELISA for their detection, we evidenced the interest of aPEs in the exploration of thrombosis when APS conventional markers were negative through a 1-year retrospective study including 1131 consecutive patients routinely tested for aPEs. To validate this result, we assessed aPEs in a newly selected population of 77 patients with unexplained deep vein thrombosis (DVT). With a total prevalence of 19.5%, we confirmed the interest of aPE detection in patients with unexplained DVT who were devoid of other aPLs markers. Since endosomal compartment, a source of ROS production, has been recently identified as the cellular target of aPEs in vitro, we then investigated an association between aPE positivity and reactive oxygen species (ROS) production by measuring the production of thiobarbituric acid-reactive substances. We showed, for the first time, a significant association between aPE positivity and systemic ROS production in patients which led us to hypothesize a new mechanism of action of aPEs in thrombosis through a signaling related to oxidative stress.

8.
Int J Mol Sci ; 23(2)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35055160

RESUMO

Background: Triple Negative Breast Cancers (TNBC) are the most aggressive breast cancers and lead to poor prognoses. This is due to a high resistance to therapies, mainly because of the presence of Cancer Stem Cells (CSCs). Plasticity, a feature of CSCs, is acquired through the Epithelial to Mesenchymal Transition (EMT), a process that has been recently shown to be regulated by a key molecule, CD146. Of interest, CD146 is over-expressed in TNBC. Methods: The MDA-MB-231 TNBC cell line was used as a model to study the role of CD146 and its secreted soluble form (sCD146) in the development and dissemination of TNBC using in vitro and in vivo studies. Results: High expression of CD146 in a majority of MDA-MB-231 cells leads to an increased secretion of sCD146 that up-regulates the expression of EMT and CSC markers on the cells. These effects can be blocked with a specific anti-sCD146 antibody, M2J-1 mAb. M2J-1 mAb was able to reduce tumour development and dissemination in a model of cells xenografted in nude mice and an experimental model of metastasis, respectively, in part through its effects on CSC. Conclusion: We propose that M2J-1 mAb could be used as an additional therapeutic approach to fight TNBC.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Regulação para Cima , Animais , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígeno CD146/genética , Antígeno CD146/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Regulação para Cima/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Arthritis Rheumatol ; 74(6): 1027-1038, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35001552

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction, and vascular damage, in which the expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. Since CD146 also exists as a circulating soluble form (sCD146) that acts as a growth factor in numerous angiogenic- and inflammation-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and to characterize the regulation and functions of the different variants identified in SSc. METHODS: We performed in vitro experiments, including RNA-Seq and antibody arrays, and in vivo experiments using animal models of bleomycin-induced SSc and hind limb ischemia. RESULTS: Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of CD146 through ADAM-10 and TACE metalloproteinases, respectively. In addition, 2 novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146, were identified. Of interest, I5-13-sCD146 was significantly increased in the sera of SSc patients (P < 0.001; n = 117), in particular in patients with pulmonary fibrosis (P < 0.01; n = 112), whereas I10-sCD146 was decreased (P < 0.05; n = 117). Further experiments revealed that shed sCD146 and I10-sCD146 displayed proangiogenic activity through the focal adhesion kinase and protein kinase Cε signaling pathways, respectively, whereas I5-13-sCD146 displayed profibrotic effects through the Wnt-1/ß-catenin/WISP-1 pathway. CONCLUSION: Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc and other angiogenesis- or fibrosis-related disorders.


Assuntos
Antígeno CD146 , Escleroderma Sistêmico , Animais , Biomarcadores , Antígeno CD146/genética , Antígeno CD146/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo
10.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830300

RESUMO

Human malignant melanoma shows a high rate of mortality after metastasization, and its incidence is continuously rising worldwide. Several studies have suggested that MCAM/MUC18/CD146 plays an important role in the progression of this malignant disease. MCAM/MUC18/CD146 is a typical single-spanning transmembrane glycoprotein, existing as two membrane isoforms, long and short, and an additional soluble form, sCD146. We previously documented that molecular MCAM/MUC18/CD146 expression is strongly associated with disease progression. Recently, we showed that MCAM/MUC18/CD146 and ABCB5 can serve as melanoma-specific-targets in the selection of highly primitive circulating melanoma cells, and constitute putative proteins associated with disease spreading progression. Here, we analyzed CD146 molecular expression at onset or at disease recurrence in an enlarged melanoma case series. For some patients, we also performed the time courses of molecular monitoring. Moreover, we explored the role of soluble CD146 in different cohorts of melanoma patients at onset or disease progression, rather than in clinical remission, undergoing immune therapy or free from any clinical treatment. We showed that MCAM/MUC18/CD146 can be considered as: (1) a membrane antigen suitable for identification and enrichment in melanoma liquid biopsy; (2) a highly effective molecular "warning" marker for minimal residual disease monitoring; and (3) a soluble protein index of inflammation and putative response to therapeutic treatments.


Assuntos
Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Expressão Gênica , Melanoma/sangue , Melanoma/genética , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Antígeno CD146/sangue , Antígeno CD146/química , Antígeno CD146/genética , Feminino , Seguimentos , Humanos , Biópsia Líquida , Estudos Longitudinais , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/sangue , Recidiva Local de Neoplasia/genética , Neoplasia Residual/sangue , Neoplasia Residual/genética , Células Neoplásicas Circulantes/metabolismo , Neoplasias Cutâneas/patologia , Solubilidade , Adulto Jovem
11.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571954

RESUMO

Ischemic vascular diseases are associated with elevated tissue expression of angiomotin (AMOT), a promising molecular target for PET imaging. On that basis, we developed an AMOT-targeting radiotracer, 68Ga-sCD146 and performed the first in vivo evaluation on a myocardial infarction mice model and then, compared AMOT expression and αvß3-integrin expression with 68Ga-sCD146 and 68Ga-RGD2 imaging. After myocardial infarction (MI) induced by permanent ligation of the left anterior descending coronary artery, myocardial perfusion was evaluated by Doppler ultrasound and by 18F-FDG PET imaging. 68Ga-sCD146 and 68Ga-RGD2 PET imaging were performed. In myocardial infarction model, heart-to-muscle ratio of 68Ga-sCD146 imaging showed a significantly higher radiotracer uptake in the infarcted area of MI animals than in sham (* p = 0.04). Interestingly, we also observed significant correlations between 68Ga-sCD146 imaging and delayed residual perfusion assessed by 18F-FDG (* p = 0.04), with lowest tissue fibrosis assessed by histological staining (* p = 0.04) and with functional recovery assessed by ultrasound imaging (** p = 0.01). 68Ga-sCD146 demonstrated an increase in AMOT expression after MI. Altogether, significant correlations of early post-ischemic 68Ga-sCD146 uptake with late heart perfusion, lower tissue fibrosis and better functional recovery, make 68Ga-sCD146 a promising radiotracer for tissue angiogenesis assessment after MI.


Assuntos
Antígeno CD146/metabolismo , Radioisótopos de Gálio/metabolismo , Infarto do Miocárdio/metabolismo , Neovascularização Patológica/metabolismo , Oligopeptídeos/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Animais , Modelos Animais de Doenças , Fibrose/metabolismo , Fibrose/patologia , Fluordesoxiglucose F18/metabolismo , Integrina alfaVbeta3/metabolismo , Masculino , Camundongos , Infarto do Miocárdio/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Neovascularização Patológica/patologia , Tomografia por Emissão de Pósitrons/métodos
12.
Front Immunol ; 12: 711394, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512633

RESUMO

CD146 is an adhesion molecule essentially located in the vascular system, which has been described to play an important role in angiogenesis. A soluble form of CD146, called sCD146, is detected in the bloodstream and is known as an angiogenic factor. During placental development, CD146 is selectively expressed in extravillous trophoblasts. A growing body of evidence shows that CD146 and, in particular, sCD146, regulate extravillous trophoblasts migration and invasion both in vitro and in vivo. Hereby, we review expression and functions of CD146/sCD146 in the obstetrical field, mainly in pregnancy and in embryo implantation. We emphasized the relevance of quantifying sCD146 in the plasma of pregnant women or in embryo supernatant in the case of in vitro fertilization (IVF) to predict pathological pregnancy such as preeclampsia or implantation defect. This review will also shed light on some major results that led us to define CD146/sCD146 as a biomarker of placental development and paves the way toward identification of new therapeutic targets during implantation and pregnancy.


Assuntos
Antígeno CD146/fisiologia , Implantação do Embrião , Biomarcadores , Antígeno CD146/análise , Feminino , Humanos , Gravidez
14.
Elife ; 102021 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-33404012

RESUMO

Cancer extracellular vesicles (EVs) shuttle at distance and fertilize pre-metastatic niches facilitating subsequent seeding by tumor cells. However, the link between EV secretion mechanisms and their capacity to form pre-metastatic niches remains obscure. Using mouse models, we show that GTPases of the Ral family control, through the phospholipase D1, multi-vesicular bodies homeostasis and tune the biogenesis and secretion of pro-metastatic EVs. Importantly, EVs from RalA or RalB depleted cells have limited organotropic capacities in vivoand are less efficient in promoting metastasis. RalA and RalB reduce the EV levels of the adhesion molecule MCAM/CD146, which favors EV-mediated metastasis by allowing EVs targeting to the lungs. Finally, RalA, RalB, and MCAM/CD146, are factors of poor prognosis in breast cancer patients. Altogether, our study identifies RalGTPases as central molecules linking the mechanisms of EVs secretion and cargo loading to their capacity to disseminate and induce pre-metastatic niches in a CD146-dependent manner.


Assuntos
Neoplasias da Mama/genética , Exossomos/patologia , GTP Fosfo-Hidrolases/metabolismo , Metástase Neoplásica/genética , Animais , Neoplasias da Mama/secundário , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Corpos Multivesiculares/fisiologia , Peixe-Zebra
15.
Biomedicines ; 8(12)2020 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-33352759

RESUMO

The fundamental role of cell adhesion molecules in mediating various biological processes as angiogenesis has been well-documented. CD146, an adhesion molecule of the immunoglobulin superfamily, and its soluble form, constitute major players in both physiological and pathological angiogenesis. A growing body of evidence shows soluble CD146 to be significantly elevated in the serum or interstitial fluid of patients with pathologies related to deregulated angiogenesis, as autoimmune diseases, obstetric and ocular pathologies, and cancers. To block the undesirable effects of this molecule, therapeutic antibodies have been developed. Herein, we review the multifaceted functions of CD146 in physiological and pathological angiogenesis and summarize the interest of using monoclonal antibodies for therapeutic purposes.

16.
Biomedicines ; 8(12)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321883

RESUMO

CD146 is a cell adhesion molecule expressed on endothelial cells, as well as on other cells such as mesenchymal stem cells and Th17 lymphocytes. This protein also exists in a soluble form, whereby it can be detected in biological fluids, including the serum or the cerebrospinal fluid (CSF). Some studies have highlighted the significance of CD146 and its soluble form in angiogenesis and inflammation, having been shown to contribute to the pathogenesis of many inflammatory autoimmune diseases, such as systemic sclerosis, mellitus diabetes, rheumatoid arthritis, inflammatory bowel diseases, and multiple sclerosis. In this review, we will focus on how CD146 and sCD146 contribute to the pathogenesis of the aforementioned autoimmune diseases and discuss the relevance of considering it as a biomarker in these pathologies.

18.
Int J Cancer ; 147(6): 1666-1679, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32022257

RESUMO

Initially discovered in human melanoma, CD146/MCAM is expressed on many tumors and is correlated with cancer progression and metastasis. However, targeting CD146 remains challenging since it is also expressed on other cell types, as vessel cells, where it displays important physiological functions. We previously demonstrated that CD146 is shed as a soluble form (sCD146) that vectorizes the effects of membrane CD146 on tumor angiogenesis, growth and survival. We thus generated a novel monoclonal antibody, the M2J-1 mAb, which specifically targets sCD146, but not membrane CD146, and counteracts these effects. In our study, we analyzed the effects of sCD146 on the dissemination and the associated procoagulant phenotype in two highly invasive human CD146-positive cancer cell lines (ovarian and melanoma). Results show that sCD146 induced epithelial to mesenchymal transition, favored the generation of cancer stem cells and increased the membrane expression of tissue factor. Treatment of cancer cells with sCD146 in two experimental models (subcutaneous xenografting and intracardiac injection of cancer cells in nude mice) led to increased tumor dissemination and procoagulant activity. The M2J-1 mAb drastically reduced metastasis but also procoagulant activity, in particular by decreasing the number of circulating tumor microparticles, and blocked the relevant signaling pathways as demonstrated by RNA expression profiling experiments. Thus, our findings demonstrate that sCD146 mediates important pro-metastatic and procoagulant effects in two CD146-positive tumors. Targeting sCD146 with the newly generated M2J-1 mAb could constitute an innovative strategy for preventing dissemination and thromboembolism in many CD146-positive tumors.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Melanoma/prevenção & controle , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Cutâneas/tratamento farmacológico , Tromboembolia/prevenção & controle , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Coagulação Sanguínea/efeitos dos fármacos , Antígeno CD146/antagonistas & inibidores , Antígeno CD146/sangue , Antígeno CD146/metabolismo , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Feminino , Humanos , Melanoma/sangue , Melanoma/complicações , Melanoma/secundário , Camundongos , Invasividade Neoplásica/prevenção & controle , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/sangue , Neoplasias Ovarianas/complicações , Neoplasias Ovarianas/patologia , Transdução de Sinais/efeitos dos fármacos , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/complicações , Neoplasias Cutâneas/patologia , Tromboembolia/etiologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Sci Rep ; 9(1): 17721, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776424

RESUMO

Systemic sclerosis (SSc) is an autoimmune disorder characterized by vascular damage, excessive fibrosis and abnormal T cells immune-regulation. CD146 is an adhesion molecule essentially expressed in the vascular system, but also on TH17 lymphocytes. In view of the recently described role of CD146 in SSc, we hypothesized an involvement of CD146 positive TH17 cells in this disease. Compared to healthy controls, we showed that both soluble form of CD146 (sCD146), and IL17A levels were increased in patients with SSc with a positive correlation between both factors. A significant increase in TH17 cells attested by an increase of RORγT, IL17A mRNA and CD4+ IL17A+ cell was observed in patients with SSc. Interestingly, the percentage of TH17 cells expressing CD146 was higher in patients with SSc and inversely correlated with pulmonary fibrosis. In vitro experiments showed an augmentation of the percentage of TH17 cells expressing CD146 after cell treatment with sCD146, suggesting that, in patients the increase of this sub-population could be the consequence of the sCD146 increase in serum. In conclusion, TH17 cells expressing CD146 could represent a new component of the adaptive immune response, opening the way for the generation of new tools for the management of SSc.


Assuntos
Antígeno CD146/genética , Escleroderma Sistêmico/sangue , Células Th17/imunologia , Adulto , Idoso , Biomarcadores/sangue , Antígeno CD146/sangue , Antígeno CD146/metabolismo , Feminino , Humanos , Interleucina-17/sangue , Masculino , Pessoa de Meia-Idade , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/sangue
20.
Arterioscler Thromb Vasc Biol ; 39(6): 1026-1033, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31070478

RESUMO

CD146 (cluster of differentiation 146) is an adhesion molecule that is expressed by different cells constituting vessels, particularly endothelial cells. The last 30 years of research in this field have shown that CD146 plays a key role in the control of several vessel functions. Three forms of CD146 have been described, including 2 transmembrane isoforms and a soluble protein that is detectable in the plasma. These CD146 forms mediate pleiotropic functions through homophilic and heterophilic interactions with proteins present on surrounding partners. Several studies used neutralizing antibodies, siRNA, or genetically modified mice to demonstrate the involvement of CD146 in the regulation of angiogenesis, vascular permeability, and leukocyte transmigration. In this review, we will focus on the current knowledge of the roles of CD146 in vascular homeostasis and diseases associated with endothelial dysfunction.


Assuntos
Antígenos CD/genética , Antígeno CD146/genética , Permeabilidade Capilar/genética , Moléculas de Adesão Celular/genética , Homeostase/genética , Neovascularização Patológica/genética , Animais , Moléculas de Adesão Celular/metabolismo , Diferenciação Celular/genética , Movimento Celular/genética , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/genética , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...